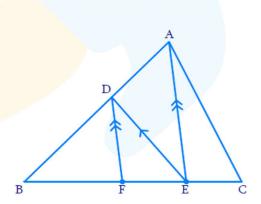


Similar Triangles

Review Exercise Questions Level-1

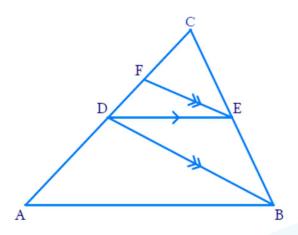

Q1. In the following figure, $DE \parallel BC$:

The length of AC is

- (A) 7.25cm
- (B) 7.5cm
- (C) 7.75cm
- (D) 8.25cm

Q2. In the following figure, E is an arbitrary point on side BC of $\triangle ABC$. ED is parallel to CA, and DF is parallel to AE. Which of the following is correct?

(A)
$$\frac{BF}{FE} = \frac{FD}{EA}$$

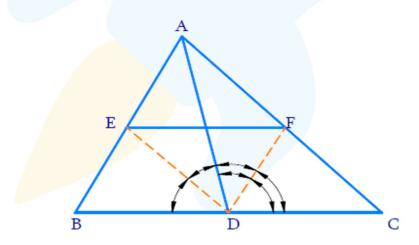

(B)
$$\frac{BF}{FE} = \frac{AC}{DE}$$

(C)
$$\frac{BE}{EC} = \frac{BF}{FE}$$

(D) None of these

Q3. In the following figure, DE is parallel to AB, and EF is parallel to BD.

Which of the following is correct?

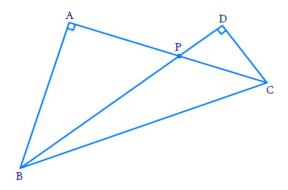

(A)
$$2CD = CF + AC$$

(B)
$$AC^2 - CF^2 = CD^2$$

(C)
$$\frac{2}{CD} = \frac{1}{CF} + \frac{1}{AC}$$

(D)
$$CD^2 = CD \times AC$$

Q4. In the following figure, AD is the median through A, while DE and DF are the angle bisectors of $\angle ADB$ and $\angle ADC$ respectively:



Which of the following is correct?

- (A) $EF \parallel BC$ in all the case
- (B) $EF \parallel BC$ only if $\triangle ABC$ is isosceles
- (C) $EF \parallel BC$ only if $\triangle ABC$ is acute angled
- (D) None of these

Q5. Consider the following figure:

Which of the following is correct?

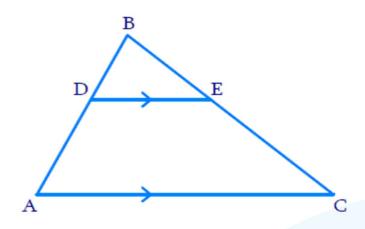
(A)
$$\frac{AP}{PC} = \frac{BP}{PD}$$

(B)
$$AP \times PC = BP \times PD$$

(C)
$$\frac{AP}{AC} = \frac{BP}{BD}$$

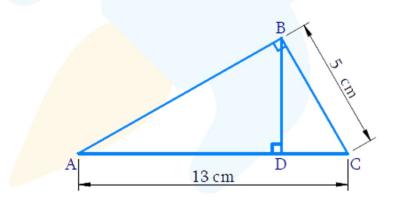
(D) None of these

Q6. In a square ABCD, equilateral triangles are drawn using AB and AC as sides:



The ratio of their areas is

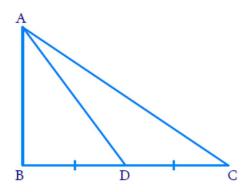
- (A) $1:\sqrt{2}$
- (B) 1:2
- (C)1: $2\sqrt{2}$
- (D)1:4
- (E) None of these


Q7. In the following figure, AB:DB=3:2, and $DE \parallel AC$.

The ratio of areas of trapezium ABEC and $\triangle ABC$ is

- (A) 13:25
- (B) 17:25
- (C)19:25
- (D) 21:25

Q8. Consider the following figure:



The ratio of the areas of $\triangle ABD$ and $\triangle ABC$ is

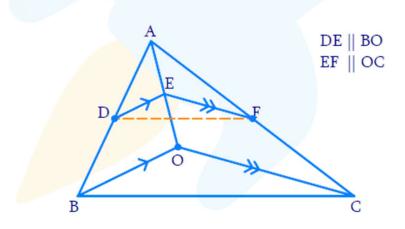
- (A)12:13
- (B)5:13
- (C)144:169
- (D)25:169
- (E) None of these

Q9. Consider the following figure. D is the mid-point of BC:

Which of the following relations is correct?

(A)
$$AC^2 = 3AD^2 - AB^2$$

(B)
$$AC^2 = 4AD^2 - 3AB^2$$


(C)
$$AC^2 = 2AD^2 + AB^2$$

$$(D) AC^2 = AD^2 + 2AB^2$$

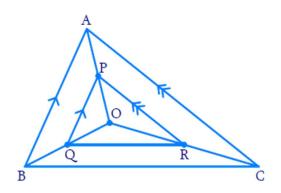
(E) None of these

Multiple options may be correct

Q10. Consider the following figure. O is an arbitrary point inside $\triangle ABC$:

Which of the following are correct?

$$(A)\frac{AD}{DB} = \frac{AE}{EO} \qquad (B)\frac{AF}{AC} = \frac{EF}{OC}$$

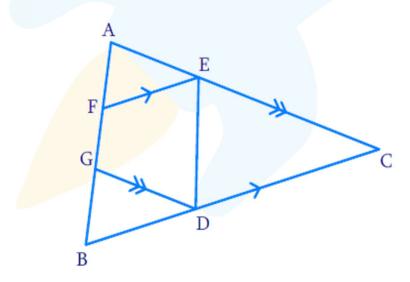

$$(B)\frac{AF}{AC} = \frac{EF}{OC}$$

$$(C)\frac{AD}{AB} = \frac{AF}{AC}$$

$$(D)DF \parallel BC$$

Q11. O is an arbitrary point inside $\triangle ABC$. P is an arbitrary point on AO. PQ and PR are parallel to AB and AC respectively:

Which of the following is correct?


(A)
$$\frac{OP}{PA} = \frac{OQ}{QB}$$
 (B) $\frac{OP}{OA} = \frac{PR}{AC}$ (C) $\frac{OQ}{QB} = \frac{OR}{RC}$ (D) $QR \parallel BC$

(B)
$$\frac{OP}{OA} = \frac{PR}{AC}$$

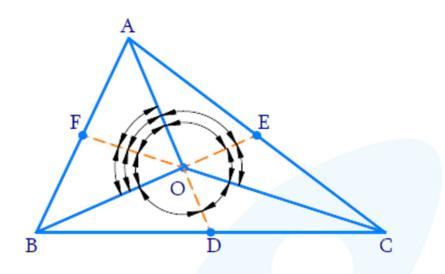
$$(C)\frac{OQ}{OB} = \frac{OR}{RC}$$

(D)
$$QR \parallel BC$$

Q12. In the following figure, AF=BG, $FE \parallel BC$ and $GD \parallel AC$:

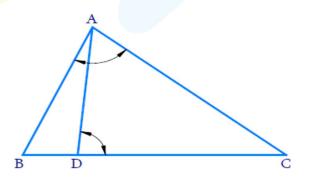
Which of the following are correct?

(A)
$$\frac{AF}{AB} = \frac{AE}{EC}$$
 (B) $\frac{BG}{GA} = \frac{BD}{DC}$


(B)
$$\frac{BG}{GA} = \frac{BD}{DC}$$

(C)
$$\frac{AE}{EC} = \frac{BD}{DC}$$
 (D) $ED \parallel AB$

(D)
$$ED \parallel AB$$


Q13. O is any point inside $\triangle ABC$. OD, OE and OF are the bisectors of $\angle BOC$, $\angle COA$ and $\angle AOB$ respectively:

Which of the following are correct?

- (A)OA.CB = AF.FB
- (B)OB.CD = OC.BD
- (C)OC.CE = OA.AE
- (D) AF.BD.CE = BF.CD.AE

Q14. D is a point on BC in $\triangle ABC$ such that $\angle ADC = \angle BAC$:

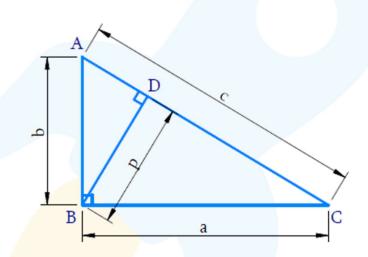
Which of the following are correct?

(A)
$$\triangle BAD \sim \triangle BCA$$

(B)
$$\triangle BAC \sim \triangle ACD$$

$$\left(C\right)\frac{AB}{BC} = \frac{AD}{AC}$$

(D)
$$AC^2 = BC \times CD$$


Q15. Which of the following are Pythagorean triplets for any positive value of x?

$$(B)$$
 8(x-1), 17x-17, 15(x-1)

(C)
$$2x-1, 2x+1, 2\sqrt{2x}$$

(*D*)
$$x, x + 2, x + 5$$

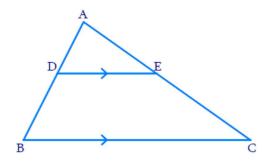
Q16. Consider the following figure:

Which of the following are correct?

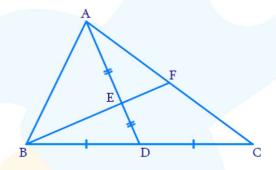
(A)
$$c^2 - p^2 = |a^2 - b^2|$$

(B)
$$cp = ab$$

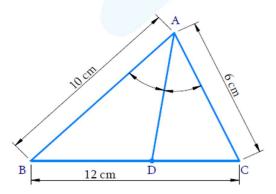
$$(C)\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$$


$$(D)\frac{1}{b} + \frac{1}{c} = \frac{1}{a} + \frac{1}{b}$$

(E)
$$p^2 = AD \times CD$$


Integers answer

Q17. Consider the following figure, in which $DE \parallel BC$, AC:DB=3:5 and AC=4.8cm:

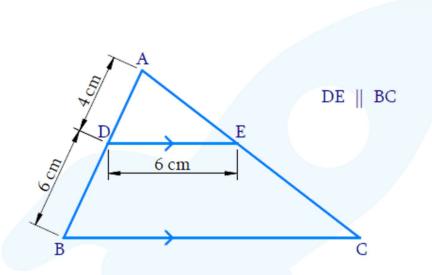

The value of 5AE is _____ cm

Q18. In $\triangle ABC$, AD is the median through A, and E is the mid-point of AD. BE intersects AC at F:

If AC=kAF, the value of k is _____.

Q19. Consider the following figure, in which AD is the bisector of $\angle A$:

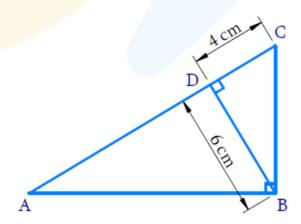
The value of 2BD is _____cm.


Q20. The perimeters of $\triangle ABC$ and $\triangle XYZ$ are 20cm and 15cm respectively. The following additional information is known

$$\angle A = \angle Y$$

 $\angle C = \angle X$
 $AC = 8cm$

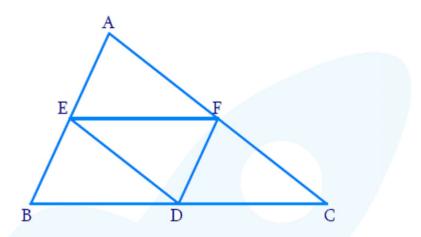
The length of XY is _____ cm.


Q21. ABCD is a parallelogram. P is the mid-point of AB. Q is a point on BD such that BQ: QD =1:3. PQ meets BC at R. The value of $BR \mid RC$ is ______.

Q22. Consider the following figure:

The length of BC is _____ cm.

Q23. Consider the following figure:

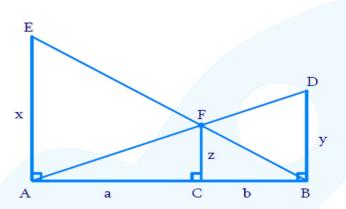

The length of AD is _____ cm

Q24. The areas of two similar triangles are $100cm^2$ and $64cm^2$. If an altitude of the first triangle is 10cm long, how long is the corresponding altitude of the second triangle?

Q25. ABCD is a trapezium with $AB \parallel CD$ and AB = 2CD. if the area of $\triangle AOB$ is $100cm^2$, what is the area of $\triangle COD$?

Q26. In $\triangle ABC$, D, E and F are the mid-points of BC, CA and AB respectively.

The value of $\frac{area(\Delta ABC)}{area(\Delta DEF)}$ is ______.


Q27. $\triangle ABC$ is right-angled at A. P and Q are points on AB such that AP=PQ=QB. If $3CB^2 + 5CP^2 = \lambda CQ^2$, the value of λ is _____.

Miscellaneous

- **Q28.** (a) Consider a trapezium ABCD with AB \parallel CD. The diagonals of this trapezium meet at O. Show that AO: OC = BO: OD.
 - (b) Prove the converse also. That is, if AO : OC = BO : OD, show that ABCD is a trapezium.
- **Q29.** In an isosceles $\triangle ABC$, with vertex A the bisectors of $\angle B$ and $\angle C$ meet the opposite sides at E and F respectively. Prove that FE \parallel BC.
- **Q30.** In $\triangle ABC$, the angle bisector BE and CF of $\angle B$ and $\angle C$ respectively meet at I. Prove that AF : FI = AC : CI.
- Q31. \triangle ABC is similar to \triangle DEF with X and Y as the mid-points of the corresponding sides BC and EF. Prove that AX: DY = BC : EF.
- **Q32.** In a quadrilateral ABCD, $AC \perp BD$. Show that $AB^2 + CD^2 = BC^2 + DA^2$.
- Q33. In a parallelogram ABCD, the side CD is bisected at P and BP meets AC at X. Find AX: AC.

- Q34. Suppose that $\triangle ABC \sim \triangle DEF$ and AX and DY are altitudes in the two triangles (respectively). Show that AX: DY = BC: EF.
- Q35. In a quadrilateral ABCD, AB = AD. The bisectors of \angle BAC and \angle DAC meet BC and CD at E and F respectively. Show that EF is parallel to BD.
- **Q36.** In a quadrilateral ABCD, AD = BC. Show that the mid-points of AB, CD, AC and BD form the vertices of a rhombus.
- Q37. Triangle ABC is equilateral. D is a point on BC such that BD is one-third of BC. Show that $9AD^2 = 7AB^2$.
- **Q38.** Consider the following figure:

Show that $\frac{1}{x} + \frac{1}{y} = \frac{1}{z}$.